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We present an efficient method to determine the Fourier-Laplace transform of the joint n-point probability
distribution of a continuous-time random walk for arbitrary finite n. Additionally, we devise a recursive
procedure with which it is possible to calculate the Laplace transforms of the multipoint correlation functions
without having to determine the joint probability distributions first. The methods are used on several examples
with both independent and dependent distributions for the waiting time and the spatial step size.
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I. INTRODUCTION

Since the introduction of the continuous-time random
walk �CTRW� by Montroll and Weiss �1�, its concept has
been successfully applied to model subdiffusive and super-
diffusive processes. Some recent examples are: transport in
geological formations �2�, blinking quantum dots �3�, inter-
mittent transport �4,5�, wind modeling �6,7�, human travel
�8�, and economics �9�. For many more examples and a good
overview over the theoretical background we refer to the
reviews �10,11�.

Since the CTRW is not Markovian in real time, the joint
probability distributions do not factorize. Therefore it is nec-
essary to determine all joint probability distributions to fully
characterize the process �12,13�. Montroll and Weiss derived
in the aforementioned paper �1� the Montroll-Weiss equation
which gives the Fourier-Laplace transform of the one-point
distribution. Barkai and Sokolov extended it to a description
of the two-point distributions �14�. Another extension to mul-
tipoint correlation by Baule and Friedrich �15,16� starts from
the description by Fogedby �17� with two independent
Langevin equations. Their derivation makes substantial use
of the independence between the random processes describ-
ing the time and the space evolution. Šanda and Mukamel
�12� look at a CTRW on a spatial lattice where the transition
probability to another lattice site depends on the current po-
sition while the spatial motion is independent of the waiting
times. They are mainly considering the case of an external
potential such that the transition matrix has a stationary en-
semble while aforementioned papers and we consider the
situation that temporal and spatial step size is independent of
the current position. In this paper we want to present a dif-
ferent method which is essentially an extension of the argu-
ment of Montroll and Weiss and which allows to directly
write down the joint probability distribution of a possibly
space-time coupled CTRW in Fourier-Laplace space. Addi-
tionally, we introduce a method to determine the Laplace
transforms of the multipoint correlations without having to
determine the joint probability distributions first which can
become quite complicated when considering several points.

This paper is structured as follows: after introducing some
notation, we introduce our method in the next section. We

calculate the two and three point probability distribution in
Fourier-Laplace space. In Sec. III we demonstrate how to use
the general formulation to give a direct proof of the fact �18�,
that in the unbiased case with finite mean waiting time and in
the biased case with finite mean and variance of the waiting
time, respectively, the random walk in the scaling limit is
Markovian. We proceed by using our method to present an
argument by which it is possible to calculate the Laplace
transforms of the correlation functions in a direct way, i.e.,
without determining the joint probability distributions first
�Sec. IV�. Finally, we apply this method to calculate some
correlation functions in the uncoupled and the coupled case.

In this paragraph, we want to introduce some notation.
The position of the random walker at time t is denoted by
X�t�. We assume that at time t=0, the walker starts at the
origin, i.e., X�0�=0. The probability density of doing a step x
after a waiting time of t is denoted by ��x , t� �we are assum-
ing here the “leaper” �19� type of CTRW, i.e., the spatial
movement is done in one leap after waiting while the walker
rests during the waiting time, the adaptation to other models
is exemplified in Appendix A on the “creeper” �19� model�.
We denote the distribution of the waiting time by ��t�
=�dx��x , t�. We adopt the convention from Ref. �14� to dis-
tinguish the Fourier or Laplace transform of a function by
the naming of the arguments, i.e., the Fourier-Laplace trans-
form of ��x , t� will be written as

��k,�� =� dt� dxe−�t+ikx��x,t� . �1�

The n-point joint probability density function will be referred
to as pn�x1 , . . . ,xn , t1 , . . . , tn� or short as pn�x , t�. The Fourier-
Laplace transform is then

pn�k,�� =� dnt� dnxe−�·t+ik·xpn�x,t� �2�

with � · t=�1t1+ ¯ +�ntn and k ·x=k1x1+ ¯ +knxn. Section
II is mainly concerned with the determination of this Fourier-
Laplace transform. Especially for the “leaper” model, it will
be handy to have the following definition ready

p̆n�k,�� = �1 ¯ �npn�k,�� �3�

which implies the following relation in the untransformed
variables:*niemann@mpipks-dresden.mpg.de
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pn�x,t� = �
0−

t1

dt1� ¯ �
0−

tn

dtn�p̆n�x,t�� . �4�

II. JOINT PROBABILITY DISTRIBUTIONS

First, we start with splitting up the probability pn�x , t� into
the contributions of the different steps. For non negative in-
tegers q1 , . . . ,qn we call pn�q1 , . . . ,qn��x , t�= pn�q��x , t� the
density pn�x , t� intersected with the event that ti is in the
waiting time of the �qi+1�th step �for i=1, . . . ,n�. Therefore
one gets

pn�x,t� = �
q1,. . .,qn=0

�

pn�q��x,t� . �5�

We are now going to factorize this probability distribution in
terms describing only one step. We denote by �i the random
variable describing the step size of the ith step and �i the
corresponding waiting time. The probability density of the
pair ��i ,�i� is given by ��x , t� and all ��i ,�i� �i=1, . . . � are
independent random variables. With this notation we can
write �24�

pn�q��x,t� =�	
i=1

n

��xi − �1 − ¯ − �qi−1�	�ti − �1 − ¯ − �qi−1�	��1 + ¯ + �qi
− ti�
 , �6�

where � is the Dirac delta function, 	 the Heaviside step
function, and �¯� denotes the expectation value. We now
introduce the auxiliary function �j=1, . . . �


n
�j��q��x,t� = 	

i:qi�j

��xi���ti� 	
i:qi�j

��xi − � j − ¯ − �qi−1�

	�ti − � j − ¯ − �qi−1�	�� j + ¯ + �qi
− ti� .

�7�

For j=1 we regain Eq. �6� by taking the expectation value

pn�q��x,t� = �
n
�1��q��x,t�� �8�

while for j larger than every qi, 
n
�j��q��x , t� collapses to


n
�j��q��x,t� = 	

i=1

n

��xi���ti� �9�

and does not depend any more on the ��i ,�i�. In general

n

�j��q��x , t� only depends on the ��i ,�i� with i� j.
The idea is now to find a function �n

�j��q��x , t� which de-
pends only on the random variable �� j ,� j� and fulfills the
recursion relation


n
�j��q��x,t� = �n

�j��q��x,t��
n
�j+1��q��x,t� , �10�

where � denotes the convolution with respect to x1 , . . . ,xn
and t1 , . . . , tn �a Fourier convolution for the xi and a Laplace
convolution for the ti, i.e., we always assume ti�0�. The
following function will do as can easily be checked by in-
serting in Eq. �10�:

�n
�j��q��x,t� = 	

i:qi=j

��xi�	�� j − ti� 	
i:qi�j

��xi���ti�

 	
i:qi�j

��xi − � j���ti − � j� . �11�

Putting together Eqs. �8� and �10�, we get

pn�q��x,t� = � �
j=1

m

�n
�j��q��x,t�� , �12�

where m is any natural number greater than every qi. In
Fourier-Laplace space, this reads

pn�q��k,�� =�	
j=1

�

�n
�j��q��k,��
 = 	

j=1

�

��n
�j��q��k,��� ,

�13�

where we have used the fact that the ��i ,�i� are independent
and the �n

�j��q��k ,�� depend only on the random variable
�� j ,� j�. Since �n

�m��q��k ,��=1 for every m greater than every
qi we can any of these m as the upper limit for j in the
product. The function �n

�j��q��k ,�� can be interpreted as the
contribution of the jth step. As a side note, Eq. �11� be easily
adapted to other models. We exemplify this for the “creeper”
model in Appendix A.

Before we proceed to use Eq. �13� to get an explicit ex-
pression for pn�q��k ,��, we take a step back to Eq. �5�.
Tough we can calculate pn�q��k ,�� we still have to sum over
infinitely many of these terms. In the proceeding paragraphs
we want to split this sum Eq. �5� into finitely many subsums
which are easy to calculate. The idea is to group the “partial”
probabilities �i.e., the pn�q��x , t� according to the relative
ordering of the steps. For example, for two coefficients we
get the orderings q1�q2, q1=q2 and q2�q1; for three we get
q1�q2�q3, q1=q2�q3, q1�q2=q3 and q1=q2=q3 plus the
permutations which result in a different relation �in total 13�.
We now extend the notation pn�¯��x , t� such that when we
write the relation instead of the coefficients between the
square brackets, we mean that we sum over all qi which
fulfill this relation. In other words, we intersect the probabil-
ity with the event that this relation is fulfilled. For example,
we write
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p2�q1 � q2��x,t� = �
q1,q2=0

q1�q2

�

p2�q1,q2��x,t� �14�

and

p2�q1 = q2��x,t� = �
q1=0

�

p2�q1,q1��x,t� . �15�

This splits the sum into finitely many different parts. As an
example p2�x , t� can be written as

p2�x,t� = p2�q1 � q2��x,t� + p2�q1 = q2��x,t�

+ p2�q2 � q1��x,t� , �16�

respectively, for p2�k ,��

p2�k,�� = p2�q1 � q2��k,�� + p2�q1 = q2��k,��

+ p2�q2 � q1��k,�� . �17�

We will show that for each of these contributions, the sum
can be evaluated easily. We found it more intuitive to use
little diagrams which represent the relative orderings. One
example for a five point function can be seen in Fig. 1�a�.
The number of steps increases from left to right. A vertex
corresponds to a single step in whose waiting time the time
parameters of the indices indicated by the outgoing arrows
lie. A horizontal line corresponds to any finite number of
steps �including zero� taken by the walker without having
any time parameter in the step. The example represents q1
=q4�q3�q2=q5, or using the terminology of the
continuous-time random walk, that t1 and t4 are in the same
step, t3 in some later, while t2 and t5 are together again in any
even later step. We do not yet impose a corresponding order-
ing on the times t1 , . . . , t5 as this will lead to more compli-
cated terms. We will come later to a more efficient way of
using the symmetry under exchange of indices.

We now fix a diagram �respectively, a given ordering�. We
start with a vertex which corresponds always to a single step
of the continuous-time random walk. While in this general
frame the exact step number j of the vertex in a diagram can
vary, the three types of indices in Eq. �11� are always the
same for a given ordering. We use the notation: the set of
indices belonging to the times being in a later step than the
current one will be denoted by L �“later,” L= i :qi� j��. The
set of of indices belonging to the times belonging to an ear-
lier step will be denoted by E �“earlier,” E= i :qi� j��. Fi-
nally, the set of indices belonging to the times which are in
the waiting time of the current time step will be denoted by
V �“vertex,” V= i :qi= j��. In the example Fig. 1�a� we would
have for the first vertex E=  �, V= 1,4� and L= 2,3 ,5�; for
the second vertex E= 1,4�, V= 3� and L= 2,5�; and for the
last E= 1,3 ,4�, V= 2,5� and L=  �. For working with sets
of indices the following definitions are helpful:

�I = �
i�I

�i and KI = �
i�I

ki. �18�

With this notation we have for a vertex

��n
�j��q��x,t�� =� d�� d����,��	

e�E
��xe���te�

 	
v�V

��xv�	�� − tv�	
l�L

��xl − ����tl − �� ,

�19�

which is easy to calculate in Fourier-Laplace space:

�vertex�k,�� = ��n
�j��q��k,���

=
1

	v�V�v
� d�� d����,��e−�L�+iKL�

 	
v�V

�1 − e−�v��

=
1

	v�V�v
�

J�P�V�
�− 1��J���KL,�L + �J� , �20�

where P�V� is the power set of V and �J� denotes the number
of elements in J �the cardinality�. The sum in the last line
has in the � argument of � the term �L plus every combi-
nation of � j with j�J with a positive sign in front of � if it
is an even number of elements and a negative sign if it is an
odd number.

We now proceed to calculate the contribution of a hori-
zontal line. For a given horizontal line all steps have the
same types of indices in the sets E and L while always V
=  �. Looking again at our example Fig. 1�a�: the line before
the first vertex has E=  � and L= 1,2 ,3 ,4 ,5�, the line be-
tween the first and second vertex E= 1,4� and L= 2,3 ,5�
while the last line between the second and third vertex has
E= 1,3 ,4� and L= 2,5�. By using V=  � in Eq. �20�, we see
that the contribution of a single step inside a horizontal line
in the diagram is ��KL ,�L�. When we calculate the prob-
ability distribution corresponding to a given diagram �respec-
tively, ordering�, every nonnegative number of steps in a

a) λ1 λ4 λ3 λ2λ5

b) λ1 λ2

q1 < q2

λ1λ2 q1 = q2

λ2 λ1

q2 < q1

FIG. 1. �a� Example of a diagram appearing for a five point
density. Explanations are given in the text. �b� The three diagrams
for the two point density. The corresponding relations of the step
numbers are given in the right column.
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horizontal line is possible and we have to add them up. This
gives the contribution of a horizontal line

�line�k,�� = �
r=0

�

� r�KL,�L� =
1

1 − ��KL,�L�
. �21�

We can now put the contributions together. When we are
summing the pn�q��k ,�� which constitute the probability be-
longing to a fixed diagram, the only parameters we have to
sum over are all possible numbers of steps in the horizontal
lines. Comparing with Eq. �13� one sees that one gets this
sum by multiplying the contribution �20� for each vertex and
�21� for each line in the diagram. This result can alternatively
be derived by using a renewal equation �20�. We show this
approach in Appendix B.

The calculation of a joint probability distribution pn�k ,��
in Fourier-Laplace space of a continuous-time random walk
reduces therefore to the following steps: draw all possible
diagrams with n indices �or, equivalently, determine all pos-
sible orderings of the n indices�. For each diagram multiply
the finitely many contributions Eqs. �20� and �21�. Adding up
these products gives pn�k ,��.

The simplest case is of course the one point density which
has only one diagram with one line and one vertex. Using the
described procedure gives directly the Montroll-Weiss equa-
tion �1�

p1�k,�� =
1

�

1 − ����
1 − ��k,��

. �22�

Our next example is the two point density for which the
corresponding diagrams are shown in Fig. 1�b�

p2�q1 � q2��k,�� =
1

�1

��k2,�2� − ��k2,�1 + �2�
1 − ��k1 + k2,�1 + �2�


1

�2

1 − ���2�
1 − ��k2,�2�

,

p2�q1 = q2��k,�� =
1

�1�2

1 − ���1� − ���2� + ���1 + �2�
1 − ��k1 + k2,�1 + �2�

,

p2�q2 � q1��k,�� =
1

�2

��k1,�1� − ��k1,�1 + �2�
1 − ��k1 + k2,�1 + �2�


1

�1

1 − ���1�
1 − ��k1,�1�

, �23�

where we have used ����=��0,��. In combination with Eq.
�17� this reproduces a result obtained by Barkai and Sokolov
�14�.

Simplifications. Till now, we have introduced a method
which allows to write down directly the Fourier-Laplace
transform of the n-point joint probability distribution. But it
is clear, that these terms become very large, e.g., already for
p3�k ,�� we would have to consider 13 diagrams. But the
joint probability distribution are symmetric under exchange
of the indices which is a property which can also be applied
to the “partial” probability associated with a diagram. If we
look at Eq. �23�, it is easy to see that the situations q1�q2

and q2�q1 emerge from each other by permutation of the
indices while the case q1=q2 is symmetric in the indices. In
the rest of this section, we will show how to use this sym-
metry to ease the calculation.

In more detail, we are looking for a �n�k ,�� which gives
pn�k ,�� via

pn�k,�� = �
��Sn

�n�k��1�, . . . ,k��n�,���1�, . . . ,���n�� , �24�

where Sn is the symmetric group of n elements, i.e., the sum
runs over all permutations � of the indices. Ideally, �n�k ,��
will contain every type of diagram only once �e.g., for the
two-point probability q1�q2 and q2�q1 are different contri-
butions, but the diagrams have the same type or form�. To
achieve this, we draw all different structures of diagrams that
may appear only once and number the outgoing arrows from
n down to 1 �we do not put the �i at the arrows any more to
emphasize that it is not connected to a specific index but an
abstract numbering�. For the case n=3 this is shown in Fig.
2. In principle, we can now apply the same rules to construct
the pn�k ,�� to get the �n�k ,�� by summing over the differ-
ent types of diagrams. We only have to keep track that we
sum in Eq. �24� over diagrams several times when they have
vertices with more than one emerging arrow—namely, taken
the factorial of the number of arrows for each vertex. There-
fore one has to divide by this symmetry factor. In Fig. 2
these numbers are given in the right column. Therefore one
possible way to describe the contributions for �n�k ,�� is

�vertex
� �k,�� =

1

�V�!
1

	v�V�v
�

J�P�V�
�− 1��J���KL,�L + �J�

�25�

for each vertex while the contribution of a line stays the
same. This form has the advantage that it one directly gen-
eralize it to other models then the “leaper” model and is
useful in some limit considerations shown in Sec. III.

I
3 2 1

1!1!1! = 1

II
3 2 1

1!2! = 2

III
3 2 1

2!1! = 2

IV
3 2

1 3! = 6

FIG. 2. The diagrams relevant for the calculation of the three
point probability density. To indicate that this are only the ones with
sorted indices, the ends of the arrows are not attached to variables
but just labeled with decreasing numbers. The right column gives
the multiplicity with which this diagram is counted.
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If one uses the “leaper” model of the continuous-time
random walk, we consider in general an alternative form as
being more useful which uses specifics of this model. Simi-
larly to Eq. �3�, we can factor out the 1

�i
which gives rise to

the definition

�̆n�k,�� = �1 ¯ �n�n�k,�� , �26�

and we have

p̆n�k,�� = �
��Sn

�̆n�k��1�, . . . ,k��n�,���1�, . . . ,���n�� . �27�

The form which is derived here will additionally allow a
direct interpretation of �̆n�k ,�� and fix it completely.

The first change is that we now consider �̆n�k ,�� instead
of �n�k ,��. This is achieved by removing the prefactor
�	v�V�v�−1 from the definition of a vertex. Second, we notice
that—for a given diagram—we can apply any permutation
on the indices V of any vertex without changing anything in
the factors coming from horizontal lines of other vertices.
We use this freedom to apply an permutation on every ele-
ment of the sum Eq. �25� such that it can be written solely
with the combinations Kq=K1,. . .,q� and �q=�1,. . .,q�. This is
possible because of the decreasing numbering and gives an
alternative form for the vertex �now as a contribution to
�̆n�k ,���

��d,h� =
1

d!�j=0

d �d

j
��− 1� j��Kh−d,�h−d+j� �28�

which takes as arguments the degree of the vertex d �i.e., the
number of arrows leaving� and the first �and therefore high-
est� index h. Now, applying any permutation to the indices
either leaves the term invariant or transforms it to one which
uses other combination of argument other than Kq or �q �q
=1, . . . �. Therefore it is not possible that different summands
in Eq. �27� cancel in whole or part which is useful in con-
nection with computer algebra systems.

At a first glance, the restriction to the arguments Kq and
�q can be seen as a method simply to reduce the number of
possible arguments. But it is possible to give an interpreta-
tion of this representation. To see this, we start with a func-
tion f�t1 , . . . , tn� in the variables t1 , . . . , tn�0. The corre-
sponding parameters of the Laplace transform are denoted as
usual by �1 , . . . ,�n. Now, if f�t� has support contained in the
domain t1� t2� ¯ � tn, it is possible to change variables to
�t1− t2� , . . . , �tn− tn−1� , tn�0. Carrying out this variable trans-
form in the Laplace transform, one sees from the identity

�1t1 + ¯ + �ntn = �1�t1 − t2� + ¯ + �n−1�tn−1 − tn� + �ntn

�29�

that the Laplace parameters to these variables are just the
�1 , . . . ,�n. Conversely, if we write the Laplace transform
f��� in the variables �1 , . . . ,�n and if we know that it is a
Laplace transform in these variables then we can conclude
that f�t� has support in the domain t1� ¯ � tn. Now, if we
build �̆n�k ,�� from the contributions Eq. �28�, we can ex-
pand the products and end with summands which consist of
factors depending only on one �i. These are either of the

form ��Kj ,�i� or ��Kj ,�i� / �1−��Ki ,�i��. For both it is then
clear from construction that they constitute a Laplace trans-
form. Therefore, we know that �̆n�x , t� vanishes outside of
t1� ¯ � tn if we use the form Eq. �28� for the vertex. In
reverse, putting this condition on �̆n�x , t� would have fixed
�̆n�x , t� under all functions which satisfy Eq. �27�.

Applying this to the three point function with the dia-
grams depicted in Fig. 2 one gets the contributions

�̆3
I �k,�� =

��1,3�
1 − ��K3,�3�

��1,2�
1 − ��K2,�2�

��1,1�
1 − ��K1,�1�

=
��K2,�2� − ��K2,�3�

1 − ��K3,�3�


��K1,�1� − ��K1,�2�

1 − ��K2,�2�
1 − ���1�

1 − ��K1,�1�
,

�̆3
II�k,�� =

��1,3�
1 − ��K3,�3�

��2,1�
1 − ��K2,�2�

=
��K2,�2� − ��K2,�3�

1 − ��K3,�3�


1

2

1 − 2���1� + ���2�
1 − ��K2,�2�

,

�̆3
III�k,�� =

��2,3�
1 − ��K3,�3�

��1,1�
1 − ��K1,�1�

=
1

2

��K1,�1� − 2��K1,�2� + ��K1,�3�
1 − ��K3,�3�


1 − ���1�

1 − ��K1,�1�

�̆3
IV�k,�� =

��3,3�
1 − ��K3,�3�

=
1

6

1 − 3���1� + 3���2� − ���3�
1 − ��K3,�3�

,

�̆3�k,�� = �̆3
I �k,�� + �̆3

II�k,�� + �̆3
III�k,�� + �̆3

IV�k,�� . �30�

It is possible to formulate the contributions to �̆n in a
recursive way. For this one notices that for each diagram,
leaving out the factor stemming from the first line and the
first vertex, gives exactly the same contribution as the dia-
gram �with less indices� with this line and vertex removed.
Putting this into formulas, gives

�̆n�k,�� = �
d=1

n
��d,n�

1 − ��k,��
�̆n−d�k,�� . �31�

The �̆n−d takes of course only �n−d� k and � arguments, but
with the decreasing numbering introduced above, these are
the first �n−d� ones.

III. SCALING LIMIT WITH FINITE
MEAN WAITING TIME

In this section we want to give an example of how to use
the method introduced in the last section in a more general
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setting. We want to look at the scaling limit in case the wait-
ing time distribution has a finite mean �or additionally a fi-
nite second moment, depending on the definition used when
the mean of the spatial step size distribution does not van-
ish�. We are going to show that under these conditions all
finite point joint probability distributions become Markovian
in the limit. The result itself is not new �e.g., see Dentz and
Berkowitz �18��, but we think that it is nevertheless instruc-
tive to look at an argument using the introduced method.

When considering stochastic processes one is often inter-
ested in the long time behavior. A special class introduced
under the name “semi-stable” processes in a slightly broader
setting by Lamperti �21� are the ones appearing as limit pro-
cesses in the scaling limit. The limiting process is

Xlim�t� = ��X� t

�
� for � → 0, �32�

where � is the scaling exponent. The limit used for the sto-
chastic process means convergence in distribution of all fi-
nite point joint probability distributions. The exponent � is
fixed such that it is the largest one without a trivial limit
process �i.e., X�t�=0 for all t�0�. In general it is possible
that one has to extend the power law behavior by a slowly
varying function �20�, but we will assume for simplicity that
this is not the case here. Many processes converge to Brown-
ian motion with �=1 /2. Writing the convergence conditions
for the probability density, yields the limit as

pn
lim�x,t� = lim

�→0

1

�n� pn� 1

��x,
1

�
t� . �33�

Going to Fourier-Laplace space and the more convenient p̆n,
gives

p̆n
lim�k,�� = lim

�→0
p̆n���k,��� �34�

as the limit we are interested in with � chosen to be the
largest value with this object still depending non trivially on
k.

Now, we focus on the case that the waiting time distribu-
tion has the finite mean value � and spatial step distribution
has zero mean. To avoid distracting technicalities, we will
restrict ourselves to the space-time independent case where
the spatial step has variance �2 which will lead to Brownian
motion. The argument generalizes straightforwardly to other
settings. Our assumptions give rise to the following
asymptotic behavior of the Fourier-Laplace transform around
� ,k→0

���� = 1 − �� + o��� �35�

and

��k,�� = �����1 −
�2

2
k2 + o�k2�� . �36�

where we use the Landau notation. The scaling exponent is
�=1 /2. Let us first look at the denominators stemming from
the lines. Its contributions are

�line
−1 ��1/2k,��� = 1 − ���1/2Ki,��i� = ����i +

�2

2
Ki

2� + o��� .

�37�

Now we move on to the contribution of a vertex. The k
contribution factors out by our assumptions and becomes
unity in the scaling limit �which in retrospect justifies the
scaling exponent because it is therefore determined purely by
the behavior of the denominators�. A degree one vertex gives
the contribution

�vertex
deg=1

�
��1/2k,��� = ����i−1� − ����i� + o��� = ���i + o��� .

�38�

For the vertices of higher degree we apply the definition used
in Eq. �29�

� vertex
deg�2

�
��1/2k,��� = �

J�P�V�
�− 1��J������L + �J�� + o���

= �� �
J�P�V�

�− 1��J��J + o���

= o��� . �39�

Since we have the same number of lines and vertices, all
terms with vertices of degree 2 or higher vanish in the scal-
ing limit. Therefore only the diagram Fig. 3 survives. The
interpretation is that we can neglect the case that two or more
times are in the same step. The scaling limit gives

�̆n
lim�k,�� =

��n

��n +
�2

2
Kn

¯

��1

��1 +
�2

2
K1

. �40�

With

p1
lim�x,t� =� �

2��2

1

t
exp�−

�

2�2

x2

t
� �41�

being the inverse Fourier-Laplace transform of

p1
lim�k,�� =

1

� +
�2

2�
k2

�42�

one gets for pn
lim�x , t� with t1� t2� ¯ � tn−1� tn

pn
lim�x,t� = p1

lim�xn,tn�p1
lim�xn−1 − xn,tn−1 − tn�

 ¯ p1
lim�x1 − x2,t1 − t2� �43�

which is exactly the multi point density of Brownian motion.
Let us now have a look at the case that the spatial step

distribution has a finite mean ��0. Using the definition Eq.

. . .

FIG. 3. This diagrams represents the Markovian contribution of
the random walk. It is the only one that survives in the scaling limit
with finite mean waiting time.
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�32� with �=1 and the same arguments gives then

pn
lim�x,t� = 	

i=1

n

��xi −
�

�
ti� , �44�

which corresponds to a uniform deterministic motion with
velocity �

� . This is of course Markovian but not a stochastic
process in the strict sense. To see a possible diffusion on top
of the drift, we define the process

Y�t� = X�t� −
�

�
t �45�

with the joint probability distributions in Fourier-Laplace
space

pn
Y�k,�� = pn�k,� − i

�

�
k� , �46�

where pn�k ,�� still denotes the joint probability distributions
of the process X�t�. The scaling limit of this process can be
calculated as

pn
Y,lim = lim

�→0
�npn���k,�� − i

�

�
��k� . �47�

If we want this to converge to a Markovian process �with
�= 1

2 �, we additionally need the existence of the second mo-
ment of the waiting time distribution to account for the dif-
ferent orders of � appearing in the second argument. But if
we have this condition, we can essentially use the same ar-
guments as above to show that the process is Markovian.

IV. MULTIPOINT CORRELATIONS

When on wants to compare a stochastic model with mea-
sured numerical data, one often does not look at the full
probability distributions. This can have several reasons: esti-
mating probability distributions needs normally a lot of data
which is not always available or in the case of the
continuous-time random walk the analytical expressions for
the joint probability distributions become large quite fast
�e.g., see Eqs. �23� and �30��. Therefore one is often inter-
ested in the multi point correlations which are defined by

Cn�t� = �X�t1� ¯ X�tn�� �48�

or, in Laplace space,

Cn��� = � �

i�k1
¯

�

i�kn
pn�k,���

k=0
. �49�

Equation �49� can be applied to any joint probability distri-
bution determined with the method introduced in Sec. II.
This works with any model of a continuous-time random
walk but it has the disadvantage of having to determine the
joint probability distribution first. In this section we want to
focus on the “leaper” model and introduce a method which
allows us to write down the Laplace transform of the multi
point correlations without having to determine the joint prob-
abilities first.

Similar to the case of probability densities, it is conve-
nient to have the definitions

C̆n��� = �1 ¯ �nCn��� �50�

which gives in the untransformed variables

Cn�t� = �
0−

t1

dt1��
0−

tn

dtn� ¯ C̆n�t�� . �51�

Additionally, we define

�̆n��� = � �

i�k1
¯

�

i�kn
�̆n�k,���

k=0
, �52�

such that

C̆n��� = �
��Sn

�̆n����1�, . . . ,���n�� . �53�

In the remainder we will use �̆n�k ,�� by constructing it with
the definition for the vertex given in Eq. �28�, i.e., the sup-
port of �̆n�x , t� is contained in the domain tn� . . . � t2� t1
�i.e., we can use the �i as the natural variables of the Laplace
transform�. This gives directly that the support of �̆n�t� is
also contained in tn� ¯ � t2� t1.

We can see from Eq. �49� that the multi point correlations
do not depend on the full spatial-temporal probability distri-
bution of the steps but only the first n derivatives with re-
spect to k. This suggests the definition

�q��� = �� �

i�k
�q

��k,���
k=0

. �54�

We have �0���=���� as the marginal distribution of the
waiting times, while �q��� can be interpreted as the Laplace
transform of the qth moment of the spatial jump distribution
depending on the waiting time.

We now proceed to calculate �̆n���. To do this we notice
that for any diagram contributing to �̆n��� the variable kn
does only appear in the contribution of the first horizontal
line. This can also be seen from Eq. �31� by noting that Kn
=k1+ ¯ +kn is the only sum of the Ki=k1+ ¯ +ki which
contains kn. Therefore multiplying Eq. �31� with �1
−��Kn ,�n�� leaves us with an equation for which the right-
hand side is now independent of kn. This gives

�

i�kn
�1 − ��Kn,�n���̆n�k,�� = 0. �55�

Taking additionally the derivatives with respect to
k1 , . . . ,kn−1 therefore leads to

� �n

in�k1,. . .,n�
�1 − ��Kn,�n���̆n�k,���

k=0

= 0, �56�

where we introduced the notation

��J�

�kJ
�57�

to describe the differentiation with respect to all ki for which
the index i is in the set J. Applying the product rule of
differentiation gives
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�1 − �0��n���̆n���

= �
d=1

n

�d��n� �
J�P�1,. . .,n��

�J�=n−d

� �n−d

in−d�kJ
�̆n�k,���

k=0
,

�58�

where the second sum runs over all subsets of 1, . . . ,n� with
a given cardinality. In other words, it is a sum over all dif-
ferential operators of a given order which can be built by the
differentiation with respect to k1 , . . . ,kn with no second or
higher order differentiation with respect to a single ki.

We will show in Appendix C that we can evaluate these
operators with the equality �actually, we derive there a more
general form, allowing for higher derivatives�

�
J�P�1,. . .,n��

�J�=n−d

� �n−d

in−d�kJ
�̆n�k,���

k=0
=

1

d!
�̆n−d��� . �59�

Since the derivation of Eq. �59� is a simple but purely tech-
nical handling of indices, we will only give some ideas
which make Eq. �59� plausible, but leave the details to the
appendix.

Assume we would have one of these operators of order
�n−d� acting on p̆n�k ,��, i.e., given J�P�1, . . . ,n�� with
�J�= �n−d� we look at

� �n−d

in−d�kJ
p̆n�k,���

k=0
. �60�

By construction this corresponds to a �n−d�-point correla-

tion, i.e., it can be expressed by C̆n−d�¯� �dropping the ar-
guments with indices which are not contained in J�. Now,
symmetrizing �̆n�k ,�� gives p̆n�k ,��, while in Eq. �58� we
have the reversed situation: we consider �̆n�k ,�� with a
symmetrized differential operator acting on it. Since we can
distinguish the different permutations of �̆n�¯� by their sup-
port, it is likely that we can identify the result as a multiple
of �̆n−d���.

Putting Eq. �59� into Eq. �58� becomes

�̆n��� = �
d=1

n
1

d!

�d��n�
1 − ���n�

�̆n−d��� �61�

with the natural definition �̆0=1. Again we take up the con-
vention that the �n−d� arguments of �̆n−d��� are the first �i’s,
i.e., �̆n−d���= �̆n−d��1 , . . . ,�n−d�.

Equation �61� is the main result of this section. Applying
it gives

�̆1��� =
�1��1�

1 − ���1�
, �62�

�̆2��� =
�1��2�

1 − ���2�
�1��1�

1 − ���1�
+

1

2

�2��2�
1 − ���2�

, �63�

�̆3��� =
�1��3�

1 − ���3�
�1��2�

1 − ���2�
�1��1�

1 − ���1�

+
1

2

�1��3�
1 − ���3�

�2��2�
1 − ���2�

+
1

2

�2��3�
1 − ���3�

�1��1�
1 − ���1�

+
1

6

�3��3�
1 − ���3�

. �64�

We now proceed to translate the results back from
Laplace space to the real time. For this we define gq�t� as the
inverse Laplace transform of

�q���
1 − ����

�65�

for t�0 and zero otherwise. The first two examples Eqs. �62�
and �63� are in real time

�̆1�t1� = g1�t1� ,

�̆2�t1,t2� = g1�t2�g1�t1 − t2� +
1

2
g2�t2���t1 − t2� . �66�

To finally get the n-point correlation function Cn�t�, one still
has to perform an integration. In accordance with the nota-
tion used before, we call this integration of �̆n�t� by �n�t� and
we have

�n��� =
1

�1 ¯ �n
�̆n��� , �67�

where we get Cn�t� just by summing over all permutations of
the indices of �n�t� �similar to Eq. �53��. The evaluation of
�n�t� can always be reduced to arguments in the domain to
t1� t2� ¯ � tn via

�n�t� = �n�t�� �68�

with tj�=mint1 , t2 , . . . , tj�. These two terms are equal since
the difference is an integration over a domain in which �̆n�t�
vanishes. As example, for t1� t2 we have

C2�t1,t2� = �2�t1,t2� + �2�t2,t1� = �2�t1,t2� + �2�t2,t2� .

�69�

In the domain t1� t2� ¯ � tn the evaluation of �n�t� goes
over to the integral

�n�t� = �
0−

tn

d�n�
�n−

tn−1

d�n−1 ¯ �
�2−

t1

d�1�̆n��� . �70�

The minus sign behind the lower bounds expresses that a �
function sitting at the boundary �e.g., a ���i+1−�i�� is fully
evaluated �which is in the definition of the Laplace transform
and which can be seen in the fact that the Laplace transform
of ��t� is simply 1�. Before we come to some examples how
to evaluate this expression in the long time limit, we yet
want to give two small remarks.

Evaluating this integral �70� with two or more ti being
equal, we have a convolution which we can also express
directly in Laplace space. Taking additionally the � function
into account, Eq. �69� is in Laplace space
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C̃2��1,�2� =
1

�1�2

�1��1 + �2�
1 − ���1 + �2�

�1��1�
1 − ���1�

+
1

�1�2

�2��2�
1 − ���2�

+
1

�1�2
� �1��2�

1 − ���2��
2

. �71�

This is not the complete two point correlation, but C2�t1 , t2�
and C̃2�t1 , t2� coincide for t1� t2.

When the correlation function is not symmetric under ex-
change of the times �e.g., we take different powers of the
X�ti�� the corresponding differential operator in Fourier space
is also not symmetric unter permutations of the indices and it
is disadvantageous to work directly with the �̆n���. In this
case it is easier to use p̆n�k ,�� by noting that �1
−��Kn ,�n��p̆n�k ,�� is a sum of terms which are indepen-
dent of at least one ki and therefore differentiating with re-
spect to each ki �i=1, . . . ,n� at least once will yield a zero.

A. The uncoupled case

We assume here that the step size distribution is indepen-
dent from the waiting time distribution, i.e., �q���=�q����
where �q is the qth moment of the step size distribution. We
further assume that the waiting time distribution is in the
normal domain of attraction of an one-sided Lévy-
distribution with exponent � �0���1�, i.e., ����=1
− ��0���+o���� where �0 is the time constant �20�. The
asymptotic results in this subsection for the uncoupled case
can also be obtained by applying the method by Baule and
Friedrich �15� which we therefore use as a consistency
check.

As an example we assume a uncoupled CTRW with a step
size distribution with vanishing mean �i.e., �1=0�. The four-
point correlation is then given by

�̆4��� =
�2

2

4

���4�
1 − ���4�

���2�
1 − ���2�

+
�4

24

���4�
1 − ���4�

�
1

4

�2
2

�0
2�

1

�4
�

1

�2
� , �72�

where we use “�” for the long time behavior �corresponding
to small ��.

We get for t1� t2� t3� t4

�4�t� �
1

4

�2
2

�0
2�

1

����2�
0

t4

ds4�
s4

t2

ds2s4
�−1�s2 − s4��−1

=
1

4

�2
2

�0
2�

t2
�t4

�

��� + 1�2��
0

1

dss�−1�1 −
t4

t2
s��

. �73�

The last integral �with the prefactor �� is an integral repre-
sentation of the hypergeometric function F�a ,b ;c ;z� ��22�
Eq. �15.3.1��. Therefore, we can write

�4�t� �
1

4

�2
2

�0
2�

t2
�t4

�

��� + 1�2F��,− �;1 + �;
t4

t2
� . �74�

Summing over the permutations gives

C4�t� �
�2

2

�0
2�� t4

�t2
�

��� + 1�2F��,− �;1 + �;
t4

t2
�

+ 2
t4
�t3

�

��� + 1�2F��,− �;1 + �;
t4

t3
� + 3

t4
2�

��2� + 1��
�75�

in t1� t2� t3� t4. The prefactors arise from counting how
often t2, t3 and t4 arise as the smallest of the first two ele-
ments of any permutation of t1 , t2 , t3 , t4. For the last sum-
mand, we additionally used the identity ��22� Eq. �15.1.20��

F��1,− �2;1 + �1;1� =
���1 + 1����2 + 1�

���1 + �2 + 1�
. �76�

As a consistency check, we put t1= t2 and t3= t4 to get

�X2�t1�X2�t3�� �
�2

2

�0
2��5

t3
2�

��2� + 1�
+

t3
�t1

�

��� + 1�2

F��,− �;1 + �;
t3

t1
�� . �77�

This can also be calculated by applying the introduced
method to give

� �2

�k1
2

�2

�k2
2 �̆2�k,���

k=0

= �2
2 ���2�
1 − ���2�

���1�
1 − ���1�

+ 2�2
2� ���2�

1 − ���2��
2

+
�4

2

���2�
1 − ���2�

�
�2

2

�0
2�� 1

�2
�

1

�1
� +

2

�2
2�� �78�

which subsequently reproduces Eq. �77� �by substituting t3
for t2�. For Eq. �78� we used the generalized form of Eq. �59�
shown in Appendix C �Eq. �C3��.

We want to close this subsection on the uncoupled case
with the calculation of the long term behavior of
�X2�t1�X�t2�� as an example of an unsymmetric correlation. If
�1=0 this term vanishes. Therefore we consider a biased
CTRW with �1�0. Since the correlation function is not
symmetric with respect to index permutation, we have to
work with p̆2�k ,�� directly. We get in the long time limit

�i
�2

�k1
2

�

�k2
p̆2�k,���

k=0

�
�1

3���1,2��

1 − ���1,2��
� ���1��

1 − ���1��
�2

+ 2�1
3� ���1,2��

1 − ���1,2��
�2 ���1��

1 − ���1��

+ 2�1
3� ���1,2��

1 − ���1,2��
�2 ���2��

1 − ���2��

�
�1

3

�0
3 � 1

�1,2�
�

1

�1�
2� + 2

1

�1,2�
2�

1

�1�
�

+ 2
1

�1,2�
2�

1

�2�
� � . �79�
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The determination of Eq. �79� can be shortened by convincing oneself in advance that only the terms with �1�¯� are relevant
for the long time behavior. The first two terms in the last line of Eq. �79� are the Laplace transforms of a function supported
in t1� t2 while the last term is the Laplace transform of a function supported in t2� t1. The individual summands can be
determined analogously to Eqs. �73� and �74�. Putting these together with Eq. �76� gives the result, for t1� t2,

�X2�t1�X�t2�� �
�1

3

�0
3 �2

t2
3�

��3� + 1�
+ 2

t1
�

��� + 1�
t2
2�

��2� + 1�
F�2�,− �;1 + 2�;

t2

t1
� +

t1
2�

��2� + 1�
t2
�

��� + 1�
F��,− 2�;1 + �;

t2

t1
�� ,

�80�

and for t2� t1,

�X2�t1�X�t2�� �
�1

3

�0
3 �3

t2
3�

��3� + 1�
+ 2

t1
2�

��2� + 1�
t2
�

��� + 1�
F�2�,− �;1 + 2�;

t1

t2
�� . �81�

B. The coupled case

In this subsection we allow a coupling between the step
distribution and the waiting time. When we look at the
n-point correlation and if the marginal distribution of the step
size has all first n moments �q, we have

lim
�→0

�q��� = �q. �82�

Therefore, in the long time limit we end with the same terms
as in the uncoupled case, except that we have to take the
average �or marginal� moments.

Therefore we will concentrate here on the situation when
not all marginal moments exist, but nevertheless for every
bounded interval of waiting times, the step size distribution
has all necessary moments �i.e., up to the nth moment if we
look at the n-point correlation�. To be able to calculate the
long time limit, the �q��� have to exist for ��0, while they
are allowed to diverge to +� as �→0+. One way to ensure
this, is to put the condition that the increase of the moments
with the waiting time is bounded by a polynomial.

Let us look at the Lévy walk �23�

��x,t� = ��t�
���x� − vt��

2
�83�

with ��t� being for simplicity an one-sided Lévy stable dis-
tribution, which implies

��t� �
�0

�

− ��− ��
1

t1+� for t → � . �84�

We should remark that we use another parameterization as in
Ref. �23�. The long time behavior of the second and forth
moment is

�2�t� �
�0

�v2

− ��− ��
t2�

t1+� ,

�4�t� �
�0

�v4

− ��− ��
t4�

t1+� . �85�

We concentrate here on the case ��
�
2 . Then the Tauberian

theorems �20� give

�2��� �
�0

�v2��2� − ��
− ��− ��

1

�2�−� ,

�4��� �
�0

�v4��4� − ��
− ��− ��

1

�4�−� �86�

for �→0+. Similar to Eq. �78� we get here

� �2

�k1
2

�2

�k2
2 �̆2�k,���

k=0

=
�2��2�

1 − ���2�
�2��1�

1 − ���1�

+ 2� �2��2�
1 − ���2��

2

+
1

2

�4��2�
1 − ���2�

� v4���2� − ��
− ��− �� �

2� 1

�2
2�

1

�1
2� +

2

�2
4��

+
v4

2

��4� − ��
− ��− ��

1

�2
4� . �87�

In this case the term �4��2� / �1−���2�� does not vanish in
the long time limit. We get for t1� t2

�X2�t1�X2�t2�� � D1v
4 t2

4�

��4� + 1�
+ D2v

4 t1
2�t2

2�

��2� + 1�2

F�2�,− 2�;1 + 2�;
t2

t1
� , �88�

with

D1 = 5���2� − ��
− ��− �� �

2

+
��4� − ��
− ��− ��

,

D2 = ���2� − ��
− ��− �� �

2

. �89�

Since the last example showed that in difference to the
uncoupled case the term �4��2� / �1−���2�� need not to be
negligible for large times, one can ask, if it is possible that it
dominates in this limit. For this we look at the following
example ���t� as before�:
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��x,t� = ��t�� t2�

1 + t2�

���x� − v1t��
2

+
1

1 + t2�

���x� − v2t2��
2

� .

�90�

This corresponds to a CTRW where the walker makes after a
waiting time t, either a step with modulus v1t� or with v2t2�.
Which of the step sizes is taken is chosen randomly with a
probability of t2� / �1+ t2�� for the first and a probability of
1 / �1+ t2�� for the second. For ��

�
2 we get

�2��� � �0
��v1

2 + v2
2�

��2� − ��
− ��− ��

1

�2�−� ,

�4��� � �0
�v2

4��6� − ��
− ��− ��

1

�6�−� . �91�

For the four-point correlation the term with �4�¯� domi-
nates in the long time limit and we get �with �1���=0�

C4�t� � v4��6� − ��
− ��− ��

t4
6�

��6� + 1�
�92�

for t1� t2� t3� t4. The value is therefore determined by the
earliest time only.

The scaling of the variance is �X2�t��� t2�, therefore one
would expect for the fourth moment a scaling �t4� while it is
�X4�t��� t6�. This implies that the asymptotic one-point den-
sity

p1
asymptotic�x� = lim

t→�
t�p1�t�x,t� �93�

will have an infinity fourth moment. Nevertheless the fourth
moment is well defined for all finite times t.

V. SUMMARY

We have introduced a diagrammatic method which allows
to efficiently write down the joint probability distribution of
a continuous-time random walk. While this method is more
useful for calculations by hand, we additionally derived the
recursion relation �31� for computer calculations. We exem-
plified the usability by calculating several multipoint prob-
ability distributions in Fourier-Laplace space. The analytic
expressions for one and two point distributions given in the
literature �11,14� were reproduced by means of our method.
Additionally, we offered a direct proof of the fact �18� that
the continuous-time random walk asymptotically becomes
Markovian for finite mean waiting time in the unbiased case
or for finite mean and variance of the waiting time in the
biased case. Albeit we concentrate on the “leaper” model of
continuous-time random walk, the adaptation to other mod-
els is straightforward. We show how to do the calculations
for the “creeper” model in Appendix A.

In the second part, we focused on the determination of the
multipoint correlation functions for the “leaper” model. Of
course, it is always possible to derive them directly from the
joint probability distributions, but this can be quite inefficient
for many points. Therefore we derived a recursive procedure
which allows the determination of the correlation functions

without having to determine the joint probability distribu-
tions first. Finally, we showed the usage of this procedure on
some standard examples of continuous-time random walks.
The asymptotic expressions in the space-time uncoupled case
can also be inferred from a different approach �15�, they are
also reproduced by our method.
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APPENDIX A: THE “CREEPER” MODEL

In the rest of this paper, we were mainly considering the
“leaper” type for the continuous-time random walk. How-
ever, the methods introduced in Sec. II generalize directly to
other models. In this appendix we want to show this on the
example of the “creeper” model �19�. While for the “leaper”
model the random walker stayed at the same x position dur-
ing the waiting time and then leapt to its new position, the
random walker in the “creeper” model moves during the
waiting time with constant velocity to its new position.

The objective is now to find the equivalent expression for
the contribution of one step. For this we start with the ex-
pression for �n

�j��x , t� �the equivalent to Eq. �11��. For the
“creeper” model we have

�n
�j��x,t� = 	

i:qi=j

��xi −
� j

� j
ti�	�� j − ti� 	

i:qi�j

��xi���ti�

 	
i:qi�j

��xi − � j���ti − � j� . �A1�

We want to motivate this expression: the change of model
does only affect the behavior during the waiting time, but not
the step sizes and waiting time of a completed step. There-
fore we can expect, that we have a change in �n

�j��x , t� only in
the indices i with qi= j �that are the times which are in the
waiting time of the jth step—the step we are looking at�. The
difference for these is that they do not stay at the same po-
sition, but move with constant velocity

� j

� j
, where � j and � j

are the step size and the waiting time, respectively, for the
current step. This motivates why we have to replace ��xi�
with ��xi−

� j

� j
ti�.

We can now use the same machine as in Sec. II. The
contribution of a horizontal line does not change, since they
consist of steps with no indices i fulfilling qi= j. The contri-
bution of a vertex becomes

�vertex�k,�� =� d�d����,��e−�L�+iKL� 	
v�V

1 − e−�v�+ikv�

�v − ikv
�

�

.

�A2�

The one point probability distribution can be again calcu-
lated from the simple diagram having only one horizontal
line and one vertex
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p1�k,�� =
1

1 − ��k,�� � d�d����,��
1 − e−��+ik�

� − ik
�

�

. �A3�

This expression coincides with the one given by Hughes in
Ref. �19� �p. 287f�, where he also shows how to obtain the
asymptotic behavior.

In equivalence to Eq. �25� we can also define the contri-
butions to �n�k ,��. With the diagrams given in Fig. 4 we get

�2
I �k,�� =

1

1 − ��k1 + k2,�1 + �2�

� d�d����,��
�1 − e−�2�+ik2��e−�1�+ik1�

�2 − ik2
�

�


1

1 − ��k1,�1� � d�d����,��
1 − e−�1�+ik1�

�1 − ik1
�

�

,

�2
II�k,�� =

1

2

1

1 − ��k1 + k2,�1 + �2�

� d�d����,��
1 − e−�1�+ik1�

�1 − ik1
�

�

1 − e−�2�+ik2�

�2 − ik2
�

�

,

�2�k,�� = �2
I �k,�� + �2

II�k,�� . �A4�

The two point probability distribution is then given by sym-
metrization

p2�k1,k2,�1,�2� = �2�k1,k2,�1,�2� + �2�k2,k1,�2,�1� .

�A5�

APPENDIX B: RENEWAL EQUATION APPROACH

In this appendix, we want to show an alternative deriva-
tion for the joint probability distributions of a continuous-
time random walk. We concentrate on the probability corre-
sponding to a given diagram and use a renewal equation
approach to get a recursion relation on the number of verti-
ces. Figure 5 shows the relevant diagrams for this calcula-
tion. The sets V j describe the indices leaving the jth vertex
�counting from the right�. The diagram Dr in the first line
contains all r vertices while the diagram Dr−1 in the second
line follows from this by removing the leftmost vertex. The

corresponding joint probability distributions are denoted
pDr

�x , t� and pDr−1
�x , t�, respectively. The renewal equation is

set up by splitting the process in the first step �the first re-
newal� and the rest. This step can either contain all times tv
�v�Vr� and then continue with the shifted probability for the
diagram Dr−1, or all times tv �v�Vr� are in a later step which
means that after the first step the situation is still described
by the diagram Dr. The renewal equation then reads

pDr
�x,t� =� d�d����,�� 	

v�Vr

�	�� − tv���xv��

pDr−1
�x − �,t − ��

+� d�d����,��pDr
�x − �,t − �� , �B1�

where we write x−� and t−� for �x1−� ,x2−� , . . . � and �t1
−� , t2−� , . . . �, respectively. Taking the Fourier-Laplace
transform of Eq. �B1� and solving for pDr

�k ,�� gives �with
Lr=V1� ¯ �Vr−1�

pDr
�k,�� =

�J�P�Vr�
�− 1��J���KLr

,�Lr
+ �J�

�1 − ��KVr�Lr
��	v�Vr

�v
pDr−1

�k,�� .

�B2�

The factor in front of pDr−1
�k ,�� is identical to the contribu-

tion of the leftmost line and vertex as calculated in Sec. II.
Iterating Eq. �B2� therefore reproduces the result from Sec. II
for pDr

�k ,��.

APPENDIX C: DERIVATION OF EQ. (59)

In this appendix we derive a more general version of Eq.
�59�. For this we introduce the operator Dm�f�k ,��� for a
function f�k ,�� as

Dm�f�k,��� = �� �

i�k1
�q1

¯ � �

i�km
�qm

f�k,���
k=0

. �C1�

With this notation, we can write Dm�pn�k ,��� for the
Laplace transform of �Xq1�t1�¯Xqm�tm�� �we suppress the q
dependence for simplicity�. We additionally define a per-
muted version of Dm�f�k ,��� for any ��Sn �Sn is the sym-
metric group of n elements�:

I
2 1

II
2 1

FIG. 4. The diagrams relevant for the calculation of Eq.
�A4�.

Dr

. . .

Vr

. . .

Vr−1

. . .
. . .

V2

. . .

V1

Dr−1

. . .

Vr−1

. . .
. . .

V2

. . .

V1

FIG. 5. The two diagrams which appear in the renewal equation
in Appendix B. The sets V j contain the indices of the jth vertex
�from the right�. The second diagram stems from the first one by
removing the leftmost vertex.

MARKUS NIEMANN AND HOLGER KANTZ PHYSICAL REVIEW E 78, 051104 �2008�

051104-12



D�
m�f�k,��� = �� �

i�k��1�
�q1

¯ � �

i�k��m�
�qm

f�k,���
k=0

.

�C2�

When calculating correlation functions with the method in-
troduced in Sec. IV one encounters terms such as
Dm��̆n�k ,��� with m�n. For m�n the problem arises that
for the recursive procedure of Sec. IV one would need a
differentiation of �̆n�k ,�� with respect to kn. In the case of
symmetric differential operators it is possible to circumvent
the problem by use of the equation

�
��Sn

D�
m��̆n�k,��� = �

	�Sm

D	
m��̆m�k,��� , �C3�

where we identify Sm as a subgroup of Sn in the standard way
by acting on the first m elements. In case of unsymmetric
differential operators, it is better to work with p̆n�k ,�� in-
stead of �̆n�k ,�� since then the reduction is simply Eq. �C8�
�in fact, the derivation of Eq. �C3� is done by tracing back
the problem to Eq. �C8��. Equation �59� follows then from
Eq. �C3� by the following identities �here q1= . . . =qn−d=1�:

�
J�P�1,. . .,n��

�J�=n−d

� �n−d

in−d�kJ
�̆n�k,���

k=0

=
1

d!�n − d�! �
��Sn

D�
n−d��̆n�k,��� , �C4�

and

�̆n−d��� =
1

�n − d�! �
	�Sn−d

D	
n−d��̆n�k,��� . �C5�

For the derivation of Eq. �C3�, we use the notation �k
with ��Sn for the permutation of the different elements of
the vector �i.e., � acts on the indices�. This allows to write
Eq. �27� as

p̆n�k,�� = �
��Sn

�̆n��k,��� . �C6�

Symmetrizing Eq. �C3� by adding the left hand side over all
permutations ��Sn of the arguments, we get

�
��Sn

�
��Sn

D��
m ��̆n��k,���� = �

�,��Sn

D�
m��̆n��k,����

= �
��Sn

D�
m�p̆n�k,���

= �
��Sn

D�
m�p̆n��k,���� .

�C7�

Here we have used the fact that p̆n�k ,�� is symmetric in the
arguments. The term p̆n�k ,�� can be simplified by noting
that the integrating of one parameter in a joint probability
distribution gives a joint probability distribution with lesser
points, i.e.,

p̆n�k1, . . . ,kn−1,kn = 0,�1, . . . ,�n�

= p̆n−1�k1, . . . ,kn−1,�1, . . . ,�n−1� �C8�

and similar relations for other ki=0. Continuing Eq. �C7�
gives

�
��Sn

�
��Sn

D��
m ��̆n��k,����

= �
��Sn

D�
m�p̆m���k,����

= �
��Sn

�
	�Sm

D�
m��̆m��	−1k,�	−1���

= �
��Sn

�
	�Sm

D�	
m ��̆m��k,���� . �C9�

Equation �C3� follows now from Eq. �C9� by noting that the
right-hand side of Eq. �C3� has support in the domain t1
� ¯ � tn and the only term in the sum in the last line of Eq.
�C9� which shares this property is �̆l��� �one can assure one-
self that this argument is not invalidated by the fact that these
domains overlap when some ti are equal since then the val-
ues are still fixed for symmetry reasons�.

�1� E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 �1965�.
�2� B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Rev. Geo-

phys. 44, RG2003 �2006�.
�3� Y. Jung, E. Barkai, and R. J. Silbey, Chem. Phys. 284, 181

�2002�.
�4� N. Korabel, A. V. Chechkin, R. Klages, I. M. Sokolov, and V.

Y. Gonchar, Europhys. Lett. 70, 63 �2005�.
�5� N. Korabel, R. Klages, A. V. Chechkin, I. M. Sokolov, and V.

Y. Gonchar, Phys. Rev. E 75, 036213 �2007�.
�6� D. Kleinhans, R. Friedrich, H. Gontier, and A. P. Schaffarczyk,

in Proceedings of DEWEK 2006 �DEWI GmbH, Wilhelms-
haven, 2006�.

�7� H. Gontier, A. P. Schaffarczyk, D. Kleinhans, and R. Friedrich,

J. Phys.: Conf. Ser. 75, 012070 �2007�.
�8� D. Brockmann, L. Hufnagel, and T. Geisel, Nature �London�

439, 462 �2006�.
�9� E. Scalas, Physica A 362, 225 �2006�.

�10� R. Metzler and J. Klafter, J. Phys. A 37, R161 �2004�.
�11� R. Metzler and J. Klafter, Phys. Rep. 339, 1 �2000�.
�12� F. Šanda and S. Mukamel, Phys. Rev. E 72, 031108 �2005�.
�13� V. Barsegov and S. Mukamel, J. Phys. Chem. A 108, 15

�2004�.
�14� E. Barkai and I. M. Sokolov, J. Stat. Mech.: Theory Exp.

�2007�, P08001.
�15� A. Baule and R. Friedrich, Phys. Rev. E 71, 026101 �2005�.
�16� A. Baule and R. Friedrich, Europhys. Lett. 79, 60004 �2007�.

JOINT PROBABILITY DISTRIBUTIONS AND … PHYSICAL REVIEW E 78, 051104 �2008�

051104-13



�17� H. C. Fogedby, Phys. Rev. E 50, 1657 �1994�.
�18� M. Dentz and B. Berkowitz, Water Resour. Res. 39, 1111

�2003�.
�19� B. D. Hughes, Random Walks and Random Environments �Ox-

ford University Press, Oxford, 1995�, Vol. I.
�20� W. Feller, An Introduction to Probability Theory and Its Ap-

plications, 2nd ed. �John Wiley & Sons, New York, 1971�, Vol.
II.

�21� J. Lamperti, Trans. Am. Math. Soc. 104, 62 �1962�.
�22� M. Abramowitz and I. A. Stegun, eds., Handbook of Math-

ematical Functions with Formulas, Graphs, and Mathematical
Tables �Dover, New York, 1972�.

�23� J. Klafter, A. Blumen, and M. F. Shlesinger, Phys. Rev. A 35,
3081 �1987�.

�24� Being more precise, the two Heaviside 	 functions in Eq. �6�
should be replaced with a function which is one for �1+ ¯

+�qi−1� ti��1+ ¯ +�qi
and zero otherwise. This would only

change countable many points and therefore we will not see
any difference in the Fourier-Laplace transform.

MARKUS NIEMANN AND HOLGER KANTZ PHYSICAL REVIEW E 78, 051104 �2008�

051104-14


